Section 1.1

Functions

A real-valued function f of a real-valued variable x assigns to each real number x in a specified set of numbers, called the **domain** of f, a unique real number f(x), read "f of x". The variable x is called the **independent variable**, and f is called the **dependent** variable. A function is usually specified **numerically** using a table of values, **graphically** using a graph, or **algebraically** using a formula.

Domain

The set of all values of the independent variable for which a function is defined is called its **domain**.

Graph of a Function

The graph of a function f is the set of all points (x, f(x)) in the plane with x in the domain of f.

Piecewise-Defined Function

A function specified by two or more different formulas.

Vertical Line Test

For a graph to be a function, every vertical line must intersect the graph in *at most* one point.

Common Types of Algebraic Functions

Linear	f(x) = mx + b	<i>m, b</i> constant
Quadratic	$f(x) = ax^2 + bx + c$	a, b, c constant $(a \neq 0)$
Cubic	$f(x) = ax^3 + bx^2 + cx + d$	a, b, c, d constant $(a \neq 0)$
Polynomial	$f(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_2 x^2 + a_1 x + a_0$	a_n , a_{n-1} , , a_2 , a_1 , a_0 constant
Exponential	$f(x) = ab^x$	a, b constant (b positive)
Rational	f(x) = P(x)	P(x) and $Q(x)$ polynomials
	$f(x) = \frac{1}{Q(x)}$	

Problem 1. Evaluate or estimate each expression based on the following table.

x	-3	-2	-1	0	1	2	3
f(x)	1	2	4	2	1	0.5	0.25

- a) *f*(0)
- b) *f*(2)
- c) f(1) f(-1)
- d) f(1)f(-2)

Problem 2. Sketch the graph, and find the domain of the following functions:

$$y = x$$
, $y = -x$, $y = x^2$, $y = x^3$, $y = \frac{1}{x}$, $y = \sqrt{x}$, $y = |x|$, $y = 5$

Problem 3. Use the graph of the function to find approximations of the given values.

- a) f(-2)
- b) *f*(0)
- c) *f*(2)
- d) f(2) f(-2)

Problem 4. Use the graph of the function to find the approximations of the given values.

- a) f(-1)
- b) *f*(0)
- c) *f*(1)
- d) $\frac{f(3)-f(1)}{3-1}$

Problem 5. Sketch the graph of the given function, and evaluate the given expressions.

a)
$$y = \begin{cases} -x^2, & \text{if } -2 < x \le 0\\ \sqrt{x}, & \text{if } 0 < x < 4\\ f(-1), f(0), f(1) \end{cases}$$

b)
$$f(x) = \begin{cases} x - 1 & \text{if } x \le -1 \\ 2x & \text{if } -1 < x < 1 \\ x^3 & \text{if } x \ge 1 \\ f(-1), f(0), f(1) \end{cases}$$

Problem 6. The following graph shows an index P(t) of productivity in the US, where t is the time in years and t = 0 represents January 2000.

- a) What is the domain of *P*?
- b) Estimate P(-0.5), P(0) and P(1.5). Interpret your answers.

Problem 7. Given f(x) = -3x + 4, find:

- a) f(-1)
- b) *f*(2)
- c) f(a + b)

Problem 8. Given $g(x) = 2x^2 - x + 1$, find:

a)
$$g(-3)$$

b) g(x+h)

Problem 9. Find and simplify $\frac{f(x+h)-f(x)}{h}$ for the following functions:

- a) f(x) = 2x + 3
- b) $f(x) = x^2 + x$

Problem 10. The following table lists the net sales (after tax revenue) at the Finnish cell phone company Nokia for each year in the period 1995-2001 (t = 5 represents 1995)

Year t	5	6	7	8	9	10	11
Nokia Net Sales $P(t)$	8	8	10	16	20	27	28
(billions of dollars)							

Find P(5) and P(10). Interpret your answers. What is the domain of P?

Homework for this section: Read section 1.1. Watch any videos (marked with

 π

in the e-book)

Also, do the tutorials (marked with

in the e-book). Come to class with at least two questions

related to what you read/watched. Do the following problems in preparation for the quiz: #1-15 (odd), 25, 35, 39, 43, 49