Section 1.1

Functions

A real-valued function f of a real-valued variable x assigns to each real number x in a specified set of numbers, called the domain of f, a unique real number $f(x)$, read " f of x ". The variable x is called the independent variable, and f is called the dependent variable. A function is usually specified numerically using a table of values, graphically using a graph, or algebraically using a formula.

Domain

The set of all values of the independent variable for which a function is defined is called its domain.

Graph of a Function

The graph of a function f is the set of all points $(x, f(x))$ in the plane with x in the domain of f.

Piecewise-Defined Function

A function specified by two or more different formulas.

Vertical Line Test

For a graph to be a function, every vertical line must intersect the graph in at most one point.

Common Types of Algebraic Functions

Linear	$f(x)=m x+b$	m, b constant
Quadratic	$f(x)=a x^{2}+b x+c$	a, b, c constant $(a \neq 0)$
Cubic	$f(x)=a x^{3}+b x^{2}+c x+d$	a, b, c, d constant $(a \neq 0)$
Polynomial	$f(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{2} x^{2}+a_{1} x+a_{0}$	$a_{n}, a_{n-1}, \ldots, a_{2}, a_{1}, a_{0}$ constant
Exponential	$f(x)=a b^{x}$	a, b constant $(b$ positive $)$
Rational	$f(x)=\frac{P(x)}{Q(x)}$	$P(x)$ and $Q(x)$ polynomials

Problem 1. Evaluate or estimate each expression based on the following table.

x	-3	-2	-1	0	1	2	3
$f(x)$	1	2	4	2	1	0.5	0.25

a) $f(0)$
b) $f(2)$
c) $f(1)-f(-1)$
d) $f(1) f(-2)$

Problem 2. Sketch the graph, and find the domain of the following functions:

$$
y=x, \quad y=-x, \quad y=x^{2}, \quad y=x^{3}, \quad y=\frac{1}{x}, \quad y=\sqrt{x}, \quad y=|x|, \quad y=5
$$

Problem 3. Use the graph of the function to find approximations of the given values.
a) $f(-2)$
b) $f(0)$
c) $f(2)$
d) $f(2)-f(-2)$

Problem 4. Use the graph of the function to find the approximations of the given values.
a) $f(-1)$
b) $f(0)$
c) $f(1)$
d) $\frac{f(3)-f(1)}{3-1}$

Problem 5. Sketch the graph of the given function, and evaluate the given expressions.
a) $y=\left\{\begin{array}{c}-x^{2}, \text { if }-2<x \leq 0 \\ \sqrt{x}, \text { if } 0<x<4\end{array}\right.$ $f(-1), f(0), f(1)$
b) $f(x)=\left\{\begin{array}{cl}x-1 & \text { if } x \leq-1 \\ 2 x & \text { if }-1<x<1 \\ x^{3} & \text { if } x \geq 1\end{array}\right.$

Problem 6. The following graph shows an index $P(t)$ of productivity in the US, where t is the time in years and $t=0$ represents January 2000.
a) What is the domain of P ?
b) Estimate $P(-0.5), P(0)$ and $P(1.5)$. Interpret your answers.

Problem 7. Given $f(x)=-3 x+4$, find:
a) $f(-1)$
b) $f(2)$
c) $f(a+b)$

Problem 8. Given $g(x)=2 x^{2}-x+1$, find:
a) $g(-3)$
b) $g(x+h)$

Problem 9. Find and simplify $\frac{f(x+h)-f(x)}{h}$ for the following functions:
a) $f(x)=2 x+3$
b) $f(x)=x^{2}+x$

Problem 10. The following table lists the net sales (after tax revenue) at the Finnish cell phone company Nokia for each year in the period 1995-2001 ($t=5$ represents 1995)

Year t	5	6	7	8	9	10	11
Nokia Net Sales $P(t)$ (billions of dollars)	8	8	10	16	20	27	28

Find $P(5)$ and $P(10)$. Interpret your answers. What is the domain of P ?

Homework for this section: Read section 1.1. Watch any videos (marked with
in the e-book)

Also, do the tutorials (marked with
(π in the e-book). Come to class with at least two questions related to what you read/watched. Do the following problems in preparation for the quiz: \#1-15 (odd), 25, 35, 39, 43, 49

